Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Struct Chem ; 33(5): 1707-1725, 2022.
Article in English | MEDLINE | ID: covidwho-2014349

ABSTRACT

The main protease 3CLpro is one of the potential targets against coronavirus. Inhibiting this enzyme leads to the interruption of viral replication. Chalcone and its derivatives were reported to possess the ability to bind to 3CLpro protease in the binding pocket. This study explored an in-house database of 269 chalcones as 3CLpro inhibitors using in silico screening models, including molecular docking, molecular dynamics simulation, binding free energy calculation, and ADME prediction. C264 and C235 stand out as the two most potential structures. The top hit compound C264 was with the Jamda score of -2.8329 and the MM/GBSA binding energy mean value of -28.23 ± 3.53 kcal/mol, which was lower than the reference ligand. Despite the lower mean binding energy (-22.07 ± 3.39 kcal/mol), in-depth analysis of binding interaction suggested C235 could be another potential candidate. Further, in vitro and in vivo experiments are required to confirm the inhibitory ability. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-02000-3.

2.
PLoS One ; 17(4): e0266632, 2022.
Article in English | MEDLINE | ID: covidwho-1779775

ABSTRACT

Interleukin 6 (IL-6) is a cytokine with various biological functions in immune regulation, hematopoiesis, and inflammation. Elevated IL-6 levels have been identified in several severe disorders such as sepsis, acute respiratory distress syndrome (ARDS), and most recently, COVID-19. The biological activity of IL-6 relies on interactions with its specific receptor, IL-6Rα, including the membrane-bound IL-6 receptor (mIL-6R) and the soluble IL-6 receptor (sIL-6R). Thus, inhibition of the interaction between these two proteins would be a potential treatment for IL-6 related diseases. To date, no orally available small-molecule drug has been approved. This study focuses on finding potential small molecules that can inhibit protein-protein interactions between IL-6 and its receptor IL-6Rα using its crystal structure (PDB ID: 5FUC). First, two pharmacophore models were constructed based on the interactions between key residues of IL-6 (Phe74, Phe78, Leu178, Arg179, Arg182) and IL-6Rα (Phe229, Tyr230, Glu277, Glu278, Phe279). A database of approximately 22 million compounds was screened using 3D-pharmacophore models, molecular docking models, and ADMET properties. By analyzing the interactive capability of successfully docked compounds with important amino acids, 12 potential ligands were selected for further analysis via molecular dynamics simulations. Based on the stability of the complexes, the high interactions rate of each ligand with the key residues of IL-6/IL-6Rα, and the low binding free energy calculation, two compounds ZINC83804241 and ZINC02997430, were identified as the most potential IL-6 inhibitor candidates. These results will pave the way for the design and optimization of more specific compounds to combat cytokine storm in severe coronavirus patients.


Subject(s)
Interleukin-6 , Molecular Dynamics Simulation , Humans , Interleukin-6/antagonists & inhibitors , Ligands , Molecular Docking Simulation , Receptors, Interleukin-6/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL